
1 INTRODUCTION 
 
Though digital twins (DT) are not a new concept, 
access to their abilities for use by a wider group of 
stakeholders is emergent. Drazen et al. (2019) cites 
the use of system-of-system DT deployments and 
their specific utility in pro-active condition-based 
maintenance. The authors attribute the successful 
commercial deployment of these twins to advances 
in several enabling technologies such as high-
performance computing, advanced data analytics, 
and artificial intelligence. DTs have evolved as a 
"solution without a problem". It is a technology that 
offers convincing potential, however, there seems to 
be space for innovation in the formulation of use-
cases that enable its full exploitation. 

 The plethora of literature on DTs, attests to the 
fact that DT technology is increasingly well estab-
lished, yet rail-related accounts are somewhat isolat-
ed at the time of writing. The term, digital twin is 
defined and adopted differently in various applica-
tion sectors. As such, the sparsity of DTs in pub-
lished rail literature is more ascribed to adopted ter-
minology than an absence of existing applications. 
To clarify the proposed contribution of the present 
work, the following sections are devoted to a brief 
background that describes an inclusive definition 
and attributes of a DT. 

 
 

2 DIGITAL TWINS 

2.1 Evolution and definition 
The earliest DTs, enabled by Computer Automat-

ed Design, conveyed the descriptive essence of an 
object, without the requirement of its physical pres-
ence. Since, DTs have progressed to increasingly ac-
tionable, dynamic presentations that do not only fol-
low form, but can reflect behaviour and increasingly 
rich information (Grieves & Vickers, 2017). Today, 
DTs potentiate the ability to design, test, manufac-
ture and use the virtual version of an asset or system. 
This bolsters the development of digital services to-
wards increasing understanding of engineering 
products, the anticipation of responses in unforeseen 
conditions and the prediction of emergent behav-
iours (Grieves & Vickers, 2017).  

 A widely adopted definition (Niederer et al., 
2021) states that a DT is a set of virtual information 
constructs that mimics the structure, context and be-
haviour of an individual or unique physical asset, 
that is dynamically updated with data from its physi-
cal twin throughout its life-cycle, and that ultimately 
informs decisions that realize value. A complimen-
tary definition by Minerva et al. (Minerva et al., 
2020) echoes that a DT is a comprehensive software 
representation of an individual physical object which 
reflects its properties, conditions, and behaviours 
through models and data. 
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 In these definitions the essential components of 
a DT system may be identified including a physical 
asset, digital representation, and the entanglement 
between the two through sensor feeds or controlling 
actions from the user or virtual counterpart. Litera-
ture is somewhat contradicting as to a common un-
derstanding of the digital representation and entan-
glement aspects (Kritzinger et al., 2018; 
Tekinerdogan & Verdouw, 2020). The present work 
adopts the most inclusive definition (Erikstad, 2017; 
Minerva et al., 2020; Niederer et al., 2021) of a DT 
as follows:  
1. The physical asset could refer to a single com-

ponent, an assembly, or a system of assemblies. 
Kutzke et al. (2021) state that a physical system 
could be represented by an aggregate of several 
distinct and potentially different DTs, each driv-
en by the functions of individual subsystems that 
comprise the full system. Therefore, based on the 
intended use of a DT a single asset may be rep-
resented by multiple DTs. 

2. The digital representation may also be referred 
to as a virtual counterpart, software clone or a 
logical object (Minerva et al., 2020). The digital 
representation is to capture the essential physical 
manifestation of the real asset in a digital format 
(Erikstad, 2017). At a minimum, this twin should 
contain all required information to fully charac-
terize the physical asset for the intended function 
of the twin. This may be achieved through phys-
ics-based-, data-driven or hybrid (combination of 
physics-based and data-driven) models. Alt-
hough very accurate, ultra-high-fidelity represen-
tations may lead to models which are hard to im-
plement because of the high computational 
effort, requirement for domain specific 
knowledge and time-intensive development 
(Aivaliotis et al., 2019). Alternatively, simpler 
models may offer reasonable estimation of asset 
responses, at the cost of lower reliability and ac-
curacy. 

3. The link which enables communication between 
the real asset and virtual representation is termed 
entanglement (Minerva et al., 2020) where the 
intention of a DT is a one-to-one coupling with a 
unique real asset (Erikstad, 2017). Entanglement 
is characterized by three properties namely 
(Minerva et al., 2020): 

a. Connectivity - the direct or indirect 
means through which updates in state 
and/or behaviours can be realized be-
tween real and softwarized assets. 

b. Promptness - quantifies how timely 
communication between the real asset 
and its digital representation takes place. 
It is important that the latency of the digi-
tal reflection is negligible compared to 
the needs of the intended use of the DT. 

c. Association - refers to the direction of 
communication between the real asset 
and its digital counterpart. The commu-
nication can be uni-directional (typically 
from the physical asset to digital coun-
terpart) or bi-directional where virtual to 
physical information flow may addition-
ally be enabled. 

When considering connectivity, promptness 
and association, entanglement can be defined 
as weak (where information is inferred by in-
direct observations), simple (uni-directional 
link, not necessarily real-time with links that 
may be interrupted) or strong where a con-
stant bi-directional link is established, and 
the digital representation may be the control-
ling instance (Minerva et al., 2020) and may 
be ultimately automated. 

The present study elects to define DTs to include 
weak, simple, and strong physical/digital entangle-
ments. Det Norske Veritas (2020) suggest a frame-
work whereby a DT may be structured into manage-
able functional elements with capability levels 
ranging between disconnected (level 0) or connected 
(levels 1 to 5) as shown in Fig.1. The culmination of  
the functionality of the elements and their connec-
tions is classified into DTs that are standalone, de-
scriptive, diagnostic, predictive, prescriptive or au-
tonomous (Det Norske Veritas, 2020). Erikstad 
(2019) delineated DT maturity similarly and cau-
tioned that the level of insight the DT is expected to 
deliver, will be associated with complexity and cost, 
thereby stressing the need for a systematic and pur-
poseful design practice.  

 

Finally, it should be realized that use cases for DT 
are transpiring throughout the asset life cycle. 
Macchi et al. (2018) highlight the capability of DT 
to reflect an asset from inception to end of life and to 
impact strategic, tactical, and operational control 
levels. DTs could be concurrently developed along-
side new products to reflect their state and behaviour 
throughout the design and manufacturing stages. 
Pedersen et al. (2021) propose to distinguish be-
tween living and prototyping DTs. The latter repre-
sents a system scenario sans direct coupling to real-
time observations for design or planning actions. 

2.2 Contribution 
It is acknowledged that rail sector stakeholders 

are complex enterprises with major capital invest-

Figure 1. DT maturity, cost, and complexity. 



ments in existing rail assets and infrastructure. With 
this in mind, the present scope includes solutions 
that enable retrofitting of DT instances onto existing 
rail assets in operation (middle of life to end of life). 
Furthermore, the contribution is pitched to assist in 
maintenance management where it is desired to op-
timize the condition and performance of assets in 
balance with activities that aim to reduce break-
downs, increase up-time, and promote reliability. In 
an effort to move away from case-specific DT ex-
amples, to more generic, widely applicable solution 
templates, the concept of DT service patterns by 
Erikstad & Bekker (2021) is leveraged. The present 
work builds on earlier service patterns by concrete 
depiction of cyber-physical interactions that employ 
a graphical model by Kapteyn et al. (2021). 

2.3 Layout 
 First, the methodology is introduced through in-
troduction of the graphical method of Kapteyn et al. 
(2021)(Section 3.1) and the originally proposed ser-
vice patterns by (Erikstad & Bekker, 2021) (Sec-
tion 3.2). Next the results in Section 4 reflect a 
graphical evolution of service patterns for mirroring, 
virtual sensing, anomaly detection and fingerprint 
recognition. The practical value of each pattern is 
further illustrated through reference to literature ex-
amples from the rail sector. Finally, discussions are 
offered relating to the challenges and benefits of 
DTs that emerge from research on the presented ser-
vice patterns in Section 5. 

  
3 METHOD 

3.1 Graphical model for cyber-physical 
interactions 

 Kapteyn et al. (2021) recognized the need to de-
pict the interactions between the digital and physical 
counterparts of DTs which would enable solution 
templates and robust DT implementations at scale. 
The proposed probabilistic graphical model enables 
a formal mathematical representation of a DT which 
draws on well-established theory and methods from 
Bayesian statistics, dynamical systems, and control 
theory. The present work adopts this model, with 
some extensions to explain service patterns through 
which digital twins may be leveraged to support de-
cisions in condition-based and predictive mainte-
nance. 

 The physical asset and virtual counterpart are 
represented as a set of dynamically coupled systems 
that evolve over time through their state spaces 
(Kapteyn et al., 2021). Interactions are enabled 
through observed data and control inputs.  The 
mathematical representation comprises six quantities 
which are listed and explained in Fig. 2. 
To depict the cyber-physical interaction sequence 
for digital service patterns some minor extensions of 
this graphical model were required: 

1.  It was required to differentiate that observations 
and quantities of interest arise because of specif-
ic conditions. This was enabled by addition of 
subscripts such as |𝐴𝐴 “given A” and |𝐵𝐵 to differ-
entiate between observations and quantities of 
interest that arise under different operational 
scenarios.  

2. In some illustrations it was necessary to com-
municate clearly that the service pattern infers 
quantities of interest that are not included in the 
physical observed data. Here it was elected to 
use classical definitions from mathematics relat-
ing to sets. E.g., such that observations from set 
𝔹𝔹 are not contained in set 𝔸𝔸 or 𝔹𝔹 ∉ 𝔸𝔸. 

3.2 Patterns of in-service implementation 
Design patterns describe the solution to a recur-

ring problem in such a way that the solution can be 
re-used in a multitude of versatile applications 
(Gamma et al., 1996). Gamma et al. (1996) identi-
fied twenty-three core patterns in software systems 
which each capture the underlying architectural and 
algorithmic solutions to a specific problem inde-
pendent of programming language and application 
area. These patterns added value as common solu-
tion templates for the software development com-
munity. Erikstad (2018) was first to adopt the con-
cept of design patterns to structure the functionality 
of DTs into four groupings namely structural, crea-
tional, insight and computational patterns. 

 In later work by Erikstad & Bekker (2021) de-
sign pattern thinking was applied to identify a set of 
eight patterns for digital services based on DT (see 
Table 1).  

 
Table 1. DT service patterns (Erikstad & Bekker, 2021). 

Name Value provided by digital service 

Virtual 
sensor 

Provide insight into asset behaviour on loca-
tions without sensor observations. 

Context 
sensor 

Provide insight into loads and operational con-
text by inverse inference on asset behaviour. 

Fingerprint Understand asset operations by matching 
against a catalogue of behavioural patterns. 

Anomaly Early detection of faults and critical conditions 
by comparing observed and predicted behav-
iour. 

Root cause Identify root cause of observed deviations by 
reverse engineering physics-based simulations. 

Scout Anticipate near/future behaviour / performance 
by fast forwarding current operations using 
simulations and predictive statistics. 

Life coun-
ter 

Aggregate miniscule incremental loads to bet-
ter exploit actual life capacity and avoid fail-
ures 

Mirror Recreate complete immersive operators expe-
rience to manage remote assets 

 



Here, a DT-based service pattern is defined as a 
common, high level, conceptual solution for realiz-
ing (partly or fully) a digital service, based on a DT 
that delivers value to stakeholders by decision sup-
port and/or improved insight related the asset’s state 
or operational behaviour (Erikstad & Bekker, 
2021).  

 
4 RESULTS 
In the context of maintenance management, digitali-
sation of the rail sector has resulted in trains and 
tracks that are increasingly equipped with sensors 
and software. Remote stakeholders attain awareness 
of the state and behaviour of their assets through 
technologies such as condition monitoring. Condi-
tion-based and predictive maintenance strategies 
have long been advocated for their potential reduc-
tion in un-planned, costly breakdowns and avoid-
ance of unnecessary repairs (Nunes et al., 2023). 
Condition-based maintenance utilizes on-line sens-
ing techniques from which asset degradation infor-
mation may be inferred (Jardine et al., 2006). 
Maintenance actions are triggered by the condition 
of an asset, thereby saving labour, and reducing 
downtime, reducing costs, and increasing produc-
tion. Condition monitoring could rely on visual in-
spection, inspection measurements or permanent in-
strumentation. It is specifically in the spheres of 
condition-based maintenance that DTs may increase 
the clarity of condition assessment (Kutzke et al., 
2021). Particularly in function- or safety-critical sys-
tems. 
 Werner et al. (2019) contribute a holistic mainte-
nance strategy by formulating an approach which 
utilizes a DT to mitigate the reported lack of a sys-
tematic predictive maintenance approaches. DT 
technology is perfectly situated to advance activities 
related to diagnostics (fault isolation and identifica-
tion) and prognostics (failure mode evolution) in 
condition-based monitoring regimes. 
 The following sections detail the contribution of 
four service patterns, which aim to generalize how 
DT technology can be explicitly harnessed towards 
services that benefit maintenance management. 

4.1 Mirror 
A mirror DT enables the reflection of the asset in its 
current state through timely sensor feeds and appro-
priate dashboarding to the user. In Fig.3 the interac-
tion between physical and digital entities of the mir-
ror pattern are depicted as they evolve. The physical 
state of the asset, 𝑆𝑆1, is obtained through sufficient 
sensor (or other) physical observations, 𝑂𝑂1. Physical 
state inputs and observation data are used to realize 
the digital state reflection, 𝐷𝐷1 of the asset and deliver 
the required quantities of interest (𝑄𝑄1) as reward, 
𝑅𝑅1. When the asset receives a new control action 𝑈𝑈1 
the physical state of the asset is updated, and the dig-

ital counterpart evolves to update the reflection of 
the asset.  
 The mirror pattern delivers digital visibility and 
situational awareness (Drazen et al., 2019) to remote 
stakeholders. The implementation of this DT pattern 
could be as simple as an annotated plant model with 
clickable links to view sensor feeds and asset specif-
ics or alternatively, be highly sophisticated with 
immersive contextual modelling or extensive aug-
mented reality features. This pattern is associated 
with maturity on a descriptive level and requires 
sensor feeds or observations linked to the asset state, 
behaviour, and context. 

Applications in asset monitoring make use of this 
pattern which is widely adopted throughout broader 
industrial applications and the rail industry over the 
last decades. In South Africa, Busatta & Moyo 
(2015) proposed a monitoring system comprising ar-
rays of accelerometers, strain gauges and crack sen-
sors to monitor a single span of a highly-trafficked 
viaduct structure. This investment aims to under-
stand the deterioration rate of an aging structure and 
the detection of defects amidst usage trends such as 
increasing axle loads, number of wagons and num-
ber of trains. No further details were provided with 
regard to the dashboards or value-adding algorithms. 
Sangat et al. (2016) emphasize the need to determine 
the real-time position of trains and wagons with high 
accuracy as inputs to safety-related and maintenance 
decisions. Here, rapidly executed algorithms and 
suitable data structures mitigate errors owing to de-
lays in signal arrival time, thereby ensuring accurate 
train location mappings despite high volumes of 
geo-spatial data. 

4.2 Virtual sensor 
 A virtual sensor (see Fig.4) delivers digitally gen-
erated insights into asset behaviour beyond the 
measures that are available from a set of physical 
observation data. 
  A physical asset operates at a state, 𝑆𝑆𝑡𝑡, and is 
equipped with sensors to provide observations, 𝑂𝑂𝔸𝔸,𝑡𝑡  
from a set of sensors in collection 𝔸𝔸. The observa-
tions sufficiently enable the replication of the digital 
state of the asset, 𝐷𝐷𝑡𝑡. The digital representation is 
now be queried to infer a quantity of interest which 
is outside the measured set of observations, 𝑄𝑄𝔹𝔹,𝑡𝑡, 
where 𝔹𝔹 ∉ 𝔸𝔸.  
 As an example, the location of a critical stress 
“hotspot” may differs from the measurement loca-
tion on a real asset. The measurement can serve as 
input to enable the digital replication of the physical 
state. A virtual measurement may then be extracted 
from the desired location on the digital model 
(Erikstad & Bekker, 2021). Alternatively, data-
driven or reduced-order models could be trained to 
infer the desired responses from historical data or 
simulations. The maturity level of a virtual sensor 



twin surpasses a descriptive level DT and requires 
an investment in modelling efforts. 

Bernal et al. (2023) aimed to extend on automated 
train control systems by developing a digital twin to 
predict the instantaneous wagon derailment risk. The 
model could deliver rapid results through a surrogate 
model which was derived from a multitude of com-
putations using a sophisticated multi-body simula-
tion model. As such the surrogate model enabled the 
instantaneous determination of a performance quan-
tity which is not directly measured. 

4.3 Anomaly 
The anomaly pattern (see Fig.5) detects abnormal 
behaviour of the physical asset when sensor re-
sponses deviate from expected responses obtained 
through a virtual model which is exposed to the 
same context or load (Erikstad & Bekker, 2021). 
 The physical asset is exposed to a control action, 
𝑈𝑈𝑖𝑖, and/or an operational environment with condi-
tions, 𝐴𝐴. As a result, the asset is in a physical state, 
𝑆𝑆 , at time, 𝑡𝑡, given environmental inputs, 𝐴𝐴, and 
control inputs 𝑈𝑈, denoted as 𝑆𝑆𝑡𝑡|𝐴𝐴,𝑈𝑈. 
 The digital representation receives information 
about the control action and / or observational data 
𝑂𝑂𝑡𝑡,𝑈𝑈,𝐴𝐴, related to the context and / or control inputs 
on the asset which enable a digital output response, 
measured as a quantity of interest, 𝑄𝑄𝑡𝑡|𝐴𝐴,𝑈𝑈. Mean-
while, observation data, 𝑂𝑂𝑡𝑡|𝐴𝐴,𝑈𝑈 is captured. The in-
tent with this pattern is that the digital representation 
delivers the ideal / expected response, which serves 
as a benchmark for the detection of physically devi-
ant behaviour within a tolerance, 𝜎𝜎. If the deviation 
between the physical observation and digital quanti-
ty of interest is significant this enables the automat-
ed detection of anomalous asset responses. 
 An anomaly DT provides the advantage of digital 
vigilance and the potential automation of manual, 
repetitive tasks. At a minimum, this pattern requires 
a digital model to deliver the expected response as 
well as a physical feed of observation for compari-
son. 

Recently, Mosleh et al. (2022) proposed a meth-
odology for the automatic detection of wheel flats on 
train wheels by distinguishing between healthy and 
defective wheels. This low-cost solution employs a 
single-sensor monitoring system where wheel state 
classifications are enabled through an un-supervised 
algorithm which was developed using advanced sig-
nal processing and more extensive sensing equip-
ment. 

4.4 Fingerprint 
The fingerprint matches the response of an opera-
tional asset to a catalogue of response patterns which 
are pre-generated using a digital model or earlier di-
agnostic / qualification measurements.  

An example of a fingerprint pattern is shown in 
Fig.6 where it is desirable to recognize response pat-
terns under conditions which are denoted 𝐴𝐴. . . 𝑗𝑗. Pri-
or to the operational deployment of the fingerprint 
DT, a digital model is used to generate a matching 
set of quantities of interest, 𝑄𝑄𝐴𝐴…𝑗𝑗,  which correspond 
to intended observations on the real asset in opera-
tion. When the asset is deployed it may assume sev-
eral physical states 𝑆𝑆𝑖𝑖|𝑗𝑗 at instances 𝑡𝑡𝑖𝑖 which are 
measured by purposely positioned sensors that cap-
ture observational data 𝑂𝑂𝑖𝑖,𝑗𝑗. If the instantaneous ob-
servation 𝑂𝑂𝑖𝑖,𝑗𝑗 matches any of the fingerprint quanti-
ties 𝑄𝑄0|𝑗𝑗, the reward is that the condition of the asset 
can be automatically identified and flagged to in-
form stakeholders. 
 This pattern could be used to diagnose a type of 
failure or response in operational assets. Virtualized 
sensor feeds can be generated for early-stage failure 
scenarios without requiring that the system should 
physically have operated in this response mode be-
fore. This addresses the typical lack of failure data in 
condition-based monitoring applications. Alterna-
tively, expert diagnostics can be softwarized to assist 
in the interpretation of anomalous asset behaviour. 
The automation of the identification of response pat-
terns can alleviate laborious manual tasks and lever-
age digital vigilance. This pattern lends itself to high 
levels of customization and adaptability as the cata-
logue may be extended as new states of interest 
arise. 
 Limitations include that noisy measurements from 
real responses may deviate from digitally simulated 
fingerprints in a catalogue. This DT requires a ma-
turity level that corresponds to diagnostic capabili-
ties. In their recent review article Van Dinter et al. 
(2022) conclude that the development of reliable 
predictive maintenance models is challenging owing 
to the lack of semi-healthy or failure data. Especially 
since predictive maintenance aims at interventions 
that should be optimized before the asset encounters 
failure. Here, the use of a fingerprint DT could serve 
to generate estimations of pre-failure responses to 
inform a predictive maintenance approach. 

 
5 DISCUSSION 

5.1 Cost 
It is interesting to observe that the instantiation of 

a DT solution may require a transient investment. In 
the development stage costs could be incurred to 
fund data acquisition and sensing, data analytics and 
labelling, extensive simulation, and the generation of 
response surfaces. 



 
 

 

 

 

 

 

 

Figure 3. The mirror pattern. 

Figure 5. The anomaly pattern. 

Figure 2. A summary of the six quantities used in the graphical model by Kapteyn et al. (2021). 

Figure 6. The fingerprint pattern. 

Figure 4. The virtual sensor. 



In the operational phase a leaner infrastructure 
could serve the remainder of the DT lifecycle to de-
liver the required value. As discussed by Erikstad 
(2019) the increased sophistication and maturity of 
DTs will require greater complexity and entail in-
creased costs. Currently, the most common exam-
ples of DTs are evident in monitoring applications 
and DTs that deliver a service on a descriptive level. 

5.2 Challenges 
Proprietary ringfencing entails the challenge related 
to the lack of model sharing between rail operators, 
infrastructure managers and train producers. Living 
DTs will serve multiple stakeholders for distinct 
purposes in each of their specific roles, which calls 
for greater cooperation and sharing the benefits of 
the DT. 
 Security concerns arise with increased remote ac-
cess to sensitive information and the possibility of 
criminality through this access. Another concern in-
cludes topics such as retaining the competitive edge 
through proprietary intellectual property. 
 The reliability of information from DTs can only 
be ensured through the quality assurance of each 
functional element. Additionally, assurance is re-
quired to ensure the obtained data and models are 
complete in their representation of information that 
should influence decisions. 
 In itself DT infrastructure will require mainte-
nance, expertise and entail costs to ensure proper 
functioning. 

5.3 Advantages 
Uhlenkamp et al. (2019) state that prognostic health 
management of assets have been hampered by un-
certainty in the material behaviour, operational con-
ditions and loads that products face in deployment. 
As such DT-enabled coupling between operational 
data and virtual models springboards a means 
through which uncertainties in asset health manage-
ment (material behaviour, operational context, and 
loads) can be reduced. Kutzke et al. (2021) mention 
that DT technology is used to facilitate reliability 
and increased robustness by providing awareness to 
system operators and maintainers. This technology 
adds additional predictive capacity to anticipate deg-
radation in their real counterparts. This predictive 
ability is attributed to the fact that a DT aggregates 
numerous data sources and technologies to create a 
snapshot of the state and behaviour of an operational 
system.  A core function of living DT solutions pur-
poses to assist in decision aiding, with the following 
advantages which enable CBM on a novel scale: 
1. DT technology is an aggregator of data and 

tools with the ability to realize information shar-
ing and convenient communication towards de-
cision support. The ability to reflect a physical 
asset with a digital counterpart allows the com-

ponents and users of a DT to be widely distribut-
ed, even during operation.  

2. It is now possible to observe, analyse, and un-
derstand real-world interactions and impacts on 
different objects at a very granular level. Suita-
ble applications involve those where the unpre-
dictability of behaviour and complexity in inter-
actions and /or change of states are relevant 
(Minerva et al., 2020). 

3.  DTs enable automation of manual and repetitive 
tasks. For example, manual maintenance inspec-
tions may be augmented through indicator data, 
obtained from a sensor array. This data may be 
automatically recorded, processed, and transmit-
ted without a direct man hour requirement. The 
impact entails an increased capacity to conduct a 
higher volume of inspections, thereby increasing 
data volumes which in turn may lead to trending 
models and enhanced predictions. 

4. DT enables stakeholders to be geographically 
removed from operational assets. This digital 
visibility unhinges benefits such as remote opera-
tion or inspection of assets that are traditionally 
inaccessible. Expertise may be remotely con-
tracted with greater efficiency, lower cost as and 
a prompter time horizon an overview of the op-
erational asset can be obtained without the ex-
press requirement of physical presence. 

5. Given the correct data resolution / fidelity and 
sufficient calculation efficiency, gathered data 
may be softwarized expertise. Much the same as 
specialist software may place thousands of man 
hours’ worth of programming at the fingertips of 
an analyst, advanced diagnostics may be de-
ployed and enhanced throughout the life cycle of 
a DT as better tools / algorithms evolve. These 
tools may also be application specific, where, for 
instance, AI algorithms are trained in situ, using 
the data from a specific asset of fleet of assets to 
deliver tailored results. 

Digital vigilance: Digital records are impartial, 
relentless and do not require rest or sleep. The quali-
ty of observations will not decrease because of bore-
dom or decreasing attention span. These logs are 
useful in determining if assets were incorrectly oper-
ated or establishing the conditions or sequence of 
events at the time of failure. Tasks that dispose 
workers to boredom or unaccommodating hours 
could be transferred in full / or part to a digital 
watchman, for example round-the-clock environ-
mental observations. 
 
6 CONCLUSION 
 

The increased entanglement of physical and digi-
tal assets through DT beckons future potential for 
maintenance management, particularly condition-
based and predictive maintenance. Asset health 
management has been hampered by uncertainty in 



the material behaviour, operational conditions and 
loads that products face in deployment. DTs provide 
a highly granular means through which engineering 
knowledge and asset state can be combined to re-
duce these unknowns towards tailored decisions. 
Four DT service patterns were presented to illustrate 
how an asset can be mirrored digitally, exposed to 
anomaly detection, virtual sensing, and response pat-
tern recognition through cyber-physical interactions. 
These services leverage benefits from DTs such as 
aggregation of diverse data, remote operation, auto-
mation, softwarized expertise and digital vigilance. 
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