
1 INTRODUCTION 
 
Smart railway monitoring is of increasing importance 
in a rapidly digitizing environment which seeks oper-
ational gains and maintenance advancements for 
commercial gain and increased sustainability. Wheel 
maintenance and replacement costs are a high ex-
pense for rolling stock operators and remain an area 
of active research within the umbrella of condition 
monitoring, estimating, and forecasting. Deviations 
in wheel profiles may be categorised as localised de-
fects or defects that affect the full wheel circumfer-
ence (Mosleh et al 2022b). 

Wheel flats are discrete features on the wheel tread 
where it has been worn flat from a sliding incident. 
An impulsive noise is produced analogous to ham-
mering on the rail head by a person stationed on the 
moving car. The strength of the impact and the fre-
quency of repetition is proportional to the train speed 
and axle loading (Remington et al 1975; Jing 2018) , 
both which aggravate ground-borne vibration and 
noise (Hanson et al 2006) further elevating the noise 
and vibration levels driving dissatisfaction in urban 
areas higher (Lakušić & Ahac 2012). With rail oper-
ations approaching the limit of wheel-rail traction in 
acceleration and deceleration driven by ever tighter 

time schedules, the wheel flat issue of old remains a 
current research interest (Steenbergen 2008). 

Wheel flat identification research is divided into 
two groups; wayside methods and on-board methods. 
On-board methods monitor the wheel status in real-
time by placing the sensors on the vehicle compo-
nents such as the axle box. The potential for real-time 
feedback after a sliding incident has occurred is an at-
tractive proposition for early wheel flat detection and 
has garnered recent research interest (Bernal et al 
2019; Liu et al 2022). The drawback of instrumenting 
the rolling stock fleet is however a consideration for 
the wayside monitoring method where discrete loca-
tions along the rail are instrumented. Naturally, these 
two methods yield overlap when the digital signal 
processing of the measured data is considered and as 
such research on either type could complement one 
another in certain areas. 

The vibration characteristic of a wheel flat is non-
linear and non-stationary, making it difficult to ana-
lyse and identify the impulsive signature accurately. 
Non-stationary signals in particular do not lend them-
selves well to decomposition into sinusoidal compo-
nents (Boashash 1992). As a result, much research 
has been dedicated to developing advanced signal 
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processing methods and stress-based sensor configu-
rations for wheel flat identification. These methods 
aim to address the challenges posed by the nonlinear 
and non-stationary nature of the vibration signal, en-
abling more accurate detection and diagnosis of 
wheel flats (Alemi et al 2017; Jiang & Lin 2018; 
Bernal et al 2019; Fu et al 2023). The potential pres-
ence of an undetermined phase difference between 
flats on a single wheel set, or across multiple wheel 
sets with flats, further complicates the impulse detec-
tion search process. 

Various methods have been used for successful 
wayside wheel flat detection; Fast Fourier transforms 
(FFT) and an array of ten sensors installed over a 
length covering the circumference of the wheel (Zhou 
et al 2020); Wavelet transforms have been used in 
various forms for detecting wheel flats, including a 
discrete transform to detect bogies containing wheel 
sets with wheel flats of varying severity using a single 
wayside accelerometer and a passenger train set 
(Belotti et al 2006), a wavelet transform and support 
vector machines to find a function that can predict the 
wheel flat using data from commercial wheel load 
checkpoints (Krummenacher et al 2018), a wavelet 
optimized for local extrema detection and a Wigner-
Ville transform to identify wheel flats on operational 
trains using a single 3-axis accelerometer but with a 
limited dataset and unknown wheel conditions 
(Barman & Hazarika 2020); cepstrum analysis 
method on passenger trains where bogies with wheel 
flats were successfully detected using single sensor 
wayside vibration data during runs with a known and 
constant speed (Bracciali & Cascini 1997). Various 
other signal processing techniques have been applied 
successfully to simulated models; envelope spectrum 
analysis and an array of 12 wayside mounted strain 
gauges (Mosleh et al 2021); in a follow-up paper they 
replaced those strain gauges with two accelerometers 
and applied spectral kurtosis analysis (Mosleh et al 
2021). 

Empirical Mode Decomposition (EMD) is an adap-
tive signal analysis method without the requirement 
of a predetermined basis function (Zhao et al 2012). 
The Hilbert-Huang Transform (HHT) is based on the 
EMD method, which decomposes a signal into its in-
trinsic mode functions (IMFs). These IMFs can lead 
to mode mixing which implies that either a single 
IMF consists of signals with dramatically disparate 
scales or a signal of the same scale appears in differ-
ent IMF components (Li et al 2016). The HHT applies 
the Hilbert transform to each IMF to obtain the in-
stantaneous frequency, allowing it to analyse com-
plex, nonlinear, and non-stationary signals. HHT has 
successfully been applied to simulated axle box vibra-
tions (Li et al 2012; Jiang & Lin 2018; Souza et al 
2022) including identifying two flats on a wheel and 
investigating the results of adding a phase difference 
between wheel flats (Jiang & Lin 2018). 

Recently research has focused on methods incorpo-
rating machine learning for signal processing or fea-
ture classification. Convolutional neural networks 
were applied to time-series data from commercial 
wheel load checkpoints with success (Krummenacher 
et al 2018). A five-step process where unsupervised 
feature classification was used to determine that six 
accelerometers in series are required to identify wheel 
flats with a low-likelihood of misclassification 
(Mosleh et al 2022a). This work was built on by com-
paring the accuracy of four different feature extrac-
tion techniques using an unsupervised learning meth-
odology to automatically detect a defective wheel and 
found that a single accelerometer on the rail is suffi-
cient for identifying a defective wheel (Mohammadi 
et al 2023). A single accelerometer and an unsuper-
vised early damage detection methodology, capable 
of automatically distinguishing a defective wheel 
from a healthy one (Mosleh et al 2022b). 

The present work is carried out within the context 
of a rolling stock operator where current practice re-
lies on detection of wheel flats through feedback from 
rail officials or the train driver. It is proposed to better 
this situation through the automated detection and lo-
calisation of early-stage wheel flats from wayside 
measurements.  

The specific train model under investigation is de-
signed to be resilient against the incidence of wheel 
flats owing to an electrically controlled pneumatic 
brake system which avoids wheel locking during 
brake operations. Suspected leaks in valves and incor-
rect handbrake release procedures have given rise to 
wheel flats forming 

The bulk of previous research has relied on labora-
tory-based engineering test rigs with machined wheel 
flats, simulated data generated using dynamic numer-
ical models, or focused on on-board axle box meas-
urements. This current paper aims to explore the use 
of wayside acceleration detection as a means of iden-
tifying wheel flats in field-measured data that has 
been generated during the operation of a railway sys-
tem. Specifically, the study seeks to identify and ana-
lyse defects that have been generated during normal 
usage of the railway system, using wayside accelera-
tion measurements as a tool for data capturing and the 
Hilbert-Huang transform for analysis. The contribu-
tion of this paper is adapting the HHT, which has suc-
cessfully been used on simulated axle box vibrations, 
to using full-scale field measurements of train sets 
containing multiple wheel flats across different wheel 
sets of varying severity and the ability to automati-
cally detect wheel flats. One key approach of the pre-
sent work on the measured data front is that high fre-
quency measurements are utilized, precisely to hone 
in on reports that wheel flats cause high frequency im-
pacts that damage rolling stock and rail infrastructure. 
This requires an investment in more sophisticated rail 
measurement sensors and equipment. The premise 



constitutes an approach where high quality data is ob-
tained to enable advanced signal processing and en-
hanced diagnostics. The proposed investigation anal-
yses the acceleration profile associated with normal 
versus wheel flat measurements and distinguish nor-
mal wheels from damaged wheels. 
 
 
2 HILBERT HUANG TRANSFORM 
 
The requirement to characterize non-stationary sig-
nals for fault detection has resulted in the adoption of 
transient time-frequency analysis techniques (Huang 
et al 1998; Yan & Gao 2006; Barman & Hazarika 
2020). The Hilbert-Huang Transform (HHT) is a con-
tinuous time-frequency analysis method which de-
composes a signal into a set of intrinsic mode func-
tions (IMFs) and a residue component called the 
residual, which captures any high-frequency noise or 
trend in the signal (Huang et al 1998). This work lev-
erages the HHT technique which is receiving increas-
ing attention for its ability to characterize non-linear, 
non-Gaussian, and non-stationary signals (Li et al 
2012, Souza et al 2022).  

In essence the Hilbert-Huang Transform follows a 
two-step process: Empirical Mode Decomposition to 
generate the Intrinsic Mode Functions and Hilbert 
Spectral Analysis to analyse the instantaneous fre-
quency and energy density of each IMF (Huang et al 
1998; Yan & Gao 2006; Souza et al 2022). 
 
 
3 EXPERIMENTAL METHOD AND 

MEASUREMENTS 
 

3.1 Track 

Measurements were conducted on a straight and level 
section of track on Line 8 at the PRASA Paarden Ei-
land Rolling Stock Depot close to Cape Town, South 
Africa. The sleepers are of type P2 concrete sleepers 
with a spacing of 700 mm. The 48 kg/m rails are se-
cured by Pandrol E-clips. 

The test site was selected as it was a convenient 
section to gain access to several trains of interest for 
a pilot study. The implication of work within the de-
pot is that the maximum speed of testing was con-
strained for safety reasons. 

3.2 Rolling stock 

The Xtrapolis Mega train set (TS) comprises two 
trailer cars (T-car, TC), one at each of the front and 
rear of the train and four motorized (M-car, M) pas-
senger cars located between the T-cars. There are 16 
motorized axles and 8 trailing axles with undercar-
riage measurements provided in Table 1. Apart from 
the operator and one team member the trains were 
empty for the duration of the measurement exercise, 

resulting in a low axle loading. Infrastructure limita-
tions on the equipment required to reprofile the 
wheels results in wheel diameters very close to as-
new size. 

Table 1. Undercarriage dimensions for Xtrapolis Mega 

Distance between bogies on T-car 13,800 mm 
Distance between bogies on M-car 14,600 mm 
Distance between two axles 2,400 mm 
Wheel diameter (New) 840 mm 

Four Xtrapolis Mega TS with various wheel set con-
ditions were made available to this study. 
TS009 – Wheel flats are reported in TC1 on axles 1 

and 2. The flats ranged in size between 25-35 mm 
which is less than the allowable maximum size of 
40 mm. The train was released for service. 

TS019 - The investigation report notes several wheel 
skid incidents owing to a brake fault on bogie 2 of 
TC1. The wheels on this bogie were repeatedly 
subjected to skidding and lead to extensive tread 
damage around its circumference, Figure 1. 
Maintenance protocols required this train set to be 
removed from service. 

Figure 1. Wheel of TS019 showing extensive damage 

 
TS101 - This new train set was not reported to have 

any flats. 
TS104 - This new train set was not reported to have 

any flats. However, through subjective observa-
tions of the measurement team flats were heard 
and observed on M3 with softer sounds emitted 
from M2 and M4. As such this train does not suit 
its intended role as a benchmark for "as new" 
wheel condition. 

3.3 Measuring equipment 

Reports that wheel flats cause high frequency impacts 
that damage rolling stock and rail infrastructure re-
quire that sensors capable of high frequency, uniaxial 
measurements are utilized. A Model PCB 353B15 
ICP, ±500 g pk, accelerometer was placed on the foot 
of the rail, midspan between two sleepers capable of 



delivering reliable measurements ±5% for frequen-
cies 0.5 to 10 kHz. Siemens LMS Test.Xpress soft-
ware and LMS SCADAS data acquisition software 
was used and a sample rate of 51.2 kHz. Measure-
ments were started when it was confirmed with the 
train driver that the test is ready and the environment 
is safe. Three constant speed test runs were repeated 
for each of the desired individual speeds. 
 
 
4 WHEEL FLAT IDENTIFICATION  
 

4.1 Subjective observation 

The ground truth for wheel flats in the present study 
was based off maintenance reports and wheel flats 
characterised for that purpose. Subjective observa-
tions during the train pass-by tests pointed to further 
wheel flats being present. These additional defects 
were not individually characterised but were ob-
served to be diminutive in size (<20 mm) during spo-
radic checks and their position on the train set noted. 
The train layout and markings of known and observed 
flats are given in Figure 2. 

TS009 

TS019 

 

4.2 Time-domain analysis 

For reference, conventional time-domain metrics are 
presented. Typical time-domain features include root-
mean-square (r.m.s.), peak-to-peak, crest factor, kur-
tosis and skewness (Liang et al. 2013; Mosleh et al 
2021; Mosleh et al 2022).  

As a sample rate of 51.2 kHz was used in the pre-
sent rig with a sensor capable of 10 kHz, frequency 
content beyond this range will be less accurate and 
should be filtered out.  A Chebyshev Type II lowpass 
filter was used with a pass frequency of 10 kHz and 
stop frequency of 11 kHz. The stopband attenuation 
was set to 100 dB as presented in Figure 3. A 25th 
Chebyshev Type II filter was selected for its stability, 
maximally flat pass-band and relatively fast roll-off 
(Smith, 2013; Thompson, 2014). An overview of the 
measured results are presented in Table 2, time-do-
main metrics in Error! Reference source not 

found., and Figure 4 showing the measured signal 
relative to the train set. 
The start time of measurements varied, which would 
affect r.m.s. metrics. The analysis was made more 
consistent by selecting measurement signals from the 
point where the moving r.m.s. (over 0.2 seconds, 0.1 
second overlap) exceeded 0.25 m/s2 for speed cases 
10, 20 and 30 km/h. For the 4 km/h tests a lower 
threshold of 0.1 m/s2 was required. These values were 

determined by trail-and-error as potential triggering 
levels in future automated measurements.  
Figure 3. Frequency response of the Chebyshev Type II signal 
conditioning filter for acceleration signals. 
 
Table 2. Metrics from channel 1 for vertical acceleration meas-
urements during train pass-by [m/s2]. Raw acceleration was fil-
tered with a Chebyshev filter. 

Speed 
[km/h] 

r.m.s Max Min STD Skew-
ness 

Train set 009 
4 0.20 7.72 -9.66 0.20 -0.14 
10 1.55 41.8 -94.7 1.55 -1.01 
20 4.19 135.8 -270.5 4.19 -1.41 
30 10.3 486.0 -796.2 10.3 -1.54 

Train set 019 
4 0.33 12.2 -19.3 0.33 -0.52 
10 2.05 61.9 -188.7 2.05 -1.77 
20 8.00 287.2 -533.3 8.00 -1.86 
30 14.6 482.3 -901.3 14.6 -0.74 

Train set 101 
4 0.25 4.94 -5.22 0.25 -0.06 
10 1.42 20.9 -31.8 1.42 -0.05 
20 4.27 70.6 -108.7 4.27 -0.08 
30 7.38 252.7 -240.9 7.38 -0.04 

Train set 104 
4 0.23 11.0 -21.1 0.23 -1.68 
10 1.41 54.4 -141.7 1.41 -2.86 
20 4.11 150.9 -319.6 4.11 -1.96 
30 9.09 293.7 -846.0 9.09 -2.05 

 
 
5 HHT 
 
The signal processing was performed on a single 
channel using MATLAB. The IMFs were generated 
using [imf,residual] = emd(x) and the HHT using 
[hs,f,t,imfinsf,imfinse] = hht(___). The instantaneous 
frequency and energy 

 TS104 
Figure 2. Observed and reported wheel flats on three test train 
sets. Red markers indicate flats that were reported as severe in 
maintenance reports, whereas less significant observed flats are 
indicated with yellow shading of the wheels in the diagram. 
TS101 had no observed or reported wheel flats. 



Table 3. Time-signal graphs of the four train sets tested at various different speeds (The information in brackets indicates which TC 
entered the test region first) 

4 km/h 10  km/h 20  km/h 30  km/h 

TS009 (TC2) 

    

TS019 (TC1) 

    

TS101 (TC1) 

    

TS104 (TC1) 

    

 

 

Figure 4. Relative location of the train set (TS104) shown in conjunction with the measured acceleration-time signal at 30 km/h 

 
(imfinsf, imfinse) are used to detect wheel flats; an 
empirically determined threshold is set on both values 
before they are multiplied with each other resulting in 
a vector. A searching and grouping algorithm was 
created to search for impulses and group them to-
gether within an empirically determined time frame; 
a single flat will excite a range a data points due to the 

high sampling rate used and will indicate each of 
these as a potential flat. The recorded time in the data 
set of each impulse identified as a wheel flat is output 
which can be used to determine the wheel sets at fault. 
The HHT of the four train sets at 10 km/h and 
30 km/h are given in Table 4 along with the 
timestamps of identified wheel flats. 



Table 4. HSA of IMF including bullets on the x-axis indicating calculated wheel flat locations 

Train set                                     10 km/h                                     30 km/h 

 
 
 
 
 
TS009 

 
 

 
 
 
 
 
TS019 

  

 
 
 
 
 
TS101 

  

 
 
 
 
 
TS104 

  



6 DISCUSSION 
 
The filtered acceleration-time signals in Error! Ref-
erence source not found. & Error! Reference 
source not found. show a clear distinction between 
the magnitudes of acceleration levels of the train sets 
with documented flats (TS009 & 019) versus the set 
with wheels in as-new condition (TS101). This is 
characteristic of the impulsive nature of the wheel flat 
making contact with the rail head. The relative loca-
tion of the train carriages imposed on an acceleration-
time signal in Figure 4 further illustrates the ability of 
the peaks to be measured and used to identify the pas-
sage of each bogie. The smoother running wheels of 
TS 101 allow for individual wheel sets to be identi-
fied. The necessity for using sensors with the high-
rated capabilities used for these measurements are 
clear at 30 km/h with the acceleration approaching 
100 g.  

 The HHT method showed its ability at detecting 
high energy – high frequency occurrences and flag 
them as potential wheel flats in the time-domain. The 
thresholds used on the IMFs frequency and energy 
content need to be adapted according to the speed and 
follows an empirical process in determining their val-
ues. Incorrect selection here will result in wheel flats 
either not making the criteria or identifying false flats. 
A summary of the four train sets tested:  
TS009: The bogie with wheel flats in the investiga-

tion report was identified. Further incidences were 
identified in the 30 km/h data between 20-30 s. 
The train speed is not known accurately enough to 
back-calculate the time between those repeated 
flags to the distance between wheels or bogies in-
dicating to a single flat being measured repeatedly. 
Both the 10- and 30 km/h data also identified a flat 
on M4 which corresponds to subjective accounts 
while capturing the data. 

TS019: The bogie with wheel flats in the investiga-
tion report was identified. These flat were classi-
fied as severe and lead to a high energy impulse. 
Flats were flagged in short succession at both the 
speeds investigated. The time delay between 
flagged events did not clearly correspond to full 
wheel rotations. It was noted from the investiga-
tion report that these wheel sets were subjected to 
severe flats along the circumference of the wheel. 
It is therefore possible that multiple flats were de-
tected during every rotation of the wheel and that 
high-frequency content was smeared. 

TS101: Subjectively this train set did not have any 
audible flats and was presented in an as-new wheel 
condition. The HHT shows the passage of each bo-
gie and wheel set clearly at similar energy content. 
A flat was flagged in the 30 km/h data on M2, axle 
1 or 2. The condition of these wheel sets could not 
be confirmed, 

TS104: Multiple occurrences were flagged at both the 
investigated speeds. These correspond with visual 
inspections on M4 which had flats < 20 mm.  
The ability of the HHT to detect wheel flats and 

flag them in the time-domain is evident at the two dif-
ferent speeds researched. Without utilising the 
strength of this method which includes the ability to 
investigate individual IMFs its potential cannot com-
pletely be unlocked.  

 The on-board governing and indicating system 
of the train was used to classify the speed. Given the 
section of rail available and inevitable variations be-
tween subsequent test runs it is not certain that the 
target speed was met and maintained. The data should 
be processed such that passing wheels and the various 
geometric quantities of the bogies are used to calcu-
late a more accurate speed with the data that is avail-
able. Doing this will allow for repeat flats that are 
measured to be filtered out from the reported defec-
tive wheel set list. 

 
 

7 CONCLUSION 
 

This study presents an approach for detecting wheel 
flats on trains, utilizing high-frequency and accelera-
tion level accelerometers and the Hilbert-Huang 
Transform. Our findings demonstrate the successful 
identification of known reported flats as well as flats 
which were subjectively identified next to the passing 
train. The use of actual wayside measurements in this 
study provides a more accurate and realistic assess-
ment of wheel condition, taking into account the com-
plex dynamics of real-world train operations and the 
effect of having multiple flats on a single wheel, as 
well as multiple flats across multiple bogies. Studies 
have shown that the HHT method is capable of iden-
tifying wheel flats when on-board measurements are 
used but have not been applied to wayside conditions. 

However, our study highlights the challenges in ac-
curately detecting and confirming the actual number 
of flats due to limitations in obtaining true infor-
mation on the actual wheel condition. Despite this 
limitation, our approach offers valuable insights into 
the detection and monitoring of wheel flats, which 
can improve train safety and maintenance procedures. 

Further research is needed to address the limita-
tions of this study: 

1. Inspect the condition of each wheel on every 
train set to improve the ground truth and im-
prove accuracy of identifying wheel flats. 

2. Use individual IMFs at detecting wheel flats 
instead of their total representation. 

3. Calculate speed using the passing of each 
wheel.  

4. Set the thresholds to identify small flats, but 
also be able to then filter out detecting repeats 
of more severe flats. 
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